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Abstract-The steady-state heat-conduction problem of two semi-infinite solids in contact through a 
cylindrical joint is, by physical symmetry and uniqueness of solution, reduced to the problem of a cylinder 
of isothermal top surface in contact at its bottom with a semi-infinite solid. An analysis is carried out to 
investigate the thermal resistance of the system, taking into account the aspect ratio of the cylinder and 
the thermal conductivity of the solids. The effect of these parameters on the thermal resistance, which 
consists of the constriction resistance at the interface and the material resistance of the cylinder, is examined 

and discussed. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

It is well known that when two nominally flat solid 
surfaces are brought into contact, the actual contact 
takes place over a fraction of the interface only. At 
the interfacial regions where contact does not exist, 
air may be present. However, the heat flow across the 
air gaps is negligl ble due to the very low thermal 
conductivity of air. Consequently, the heat conducted 
from the warmer solid to the cooler one is constricted 
to flow through the contacting regions only. The con- 
striction of heat flow then results in the “thermal 
constriction resistance” at the interface. 

The study of thermal constriction resistance dates 
back several decades [l], and reviews on this subject 
are available [2-51. In general, we can identify two 
schools of approach to the problem of contact heat 
transfer. In the first one, the thermal problem of con- 
tact conductance i:s, to a varying degree, coupled with 
the mechanical problem of two solids in contact. The 
constriction resistance is then determined as a func- 
tion of contact pressure, the mechanical properties of 
the solids, and surface topography. Examples of this 
school include, but by no means are limited to, the 
works of Cooper et al. [6], Sayles and Thomas [7], 
Bush and Gibson [8], and a more recent study by 
Majumdar and Tien [9], who employ the concept of 
fractals to characterize the surface topography of the 
solids. The second school of approach to the problem 
of contact condua:ance is to decouple the thermal and 
mechanical problems. In this approach, the contact 
geometry is assumed to be known and fixed, and the 
problem involves thermal calculations only. For a 
reasonably simple contact geometry, detailed cal- 
culations of temperature and heat flow can usually be 
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carried out. In this paper, we shall take up the second 
approach. 

In the second school of approach to the problem of 
thermal constriction resistance, several authors, such 
as Hunter and Williams [lo], Gibson [l 11, and Negus 
and Yovanovich [12], have modeled the problem with 
an isothermal contact area on the top surface of an 
infinitely long circular cylinder of adiabatic lateral 
surface. The case of a cylinder of finite length has also 
been treated by Faltin [13] and Gladwell and Lemczyk 
[14], whose analysis covers a broad spectrum of 
boundary conditions. Another popular model is the 
problem of multiple contact areas on the surface of a 
semi-infinite solid. In this regard, Greenwood [ 151 has 
considered the case of a single cluster of circular con- 
tacts, while Beck [ 161 has treated the case of regularly 
arranged circular contacts heated by a uniform heat 
flux. In a more recent study, Tio and Sadhal [17] 
have also treated the problem of a periodic array of 
isothermal contacts, in addition to contact areas 
heated by a uniform heat flux. While the works cited 
above all involve discrete contact areas, the problem 
of a multiply connected contact region has also been 
studied. Tio and Sadhal [ 181 have modeled this prob- 
lem with discrete circular gaps, i.e., regions of no 
contact, arranged periodically on the otherwise iso- 
thermal surface of a semi-infinite solid. A two-dimen- 
sional problem in which two solids are in partial con- 
tact at their interface due to the presence of interstitial 
materials has also been considered [ 19, 201. 

In this paper, we shall consider a problem which, 
in some respect, is a generalization of the work of Tio 
and Sadhal [17]. Specifically, we shall consider the 
problem associated with two solids in contact through 
a cylindrical joint of finite length, as opposed to the 
circular disks of zero thickness studied by Tio and 
Sadhal [17]. Our main objective is to investigate how 
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NOMENCLATURE 

48 coefficients in the series expansion (19) 

b, coefficients in the series expansion (25) 
b. (IV) b, obtained using the first N equations 

(30) 
C 
F: 

equation (32) 
equation (28) 

G, equation (29) 
h = H/R dimensionless height of the 

cylinder 
h,, h,, h, metric coefficients, equations (23), 

(24) 
r’ fl;aFa;;$ert Fig. 2 

AT difference between To and the average 
surface temperature of solid 2 

ATcyllnder difference between T, and the 
average temperature of the 
cylinder’s bottom surface 

AT,, difference between the average 
temperatures of the bottom surface 
of the cylinder and the entire surface 
of solid 2 

AT,,, difference between the average surface 
temperatures of solids 3 and 2 

: 
equation (37) 
dimensionless temperature, equation 

Y Bessel function of the first kind of (2) 
order v 1, nth positive root of J, 

k thermal conductivity p conductivity ratio, equation (18) 
N number of equations (30) used in the cp dimensionless resistance, equation 

calculation of b, (17) 
P* Legendre polynomial of degree n * dimensionless resistance, equation 
Qn, Qk Legendre function of the second kind (16). 

of degree n, derivative of Qn 

e rate of heat flow from the cylinder to 
solid 2 

R radius of the cylinder 
Subscripts 

a thermal resistance, equation (11) 
1 of solid 1 (the cylinder) 

%! thermal resistance between solids 2 
2 of solid 2 

tot 
and 3 

C constriction resistance 

T m 
temperature 

material resistance. 

T0 temperature of the cylinder’s top 
surface, Fig. 2 

TX far-field temperature. Coordinate systems 
(r, 4, z) cylindrical coordinates 

Greek symbols (e, $,[) dimensionless cylindrical 
6 equation (36) coordinates, equation (1) 
6 mn Kronecker delta, equation (3 1) (c(, b, 4) oblate spheroidal coordinates. 

the finite thickness of the cylinder, through its physical 
configuration and the thermal properties of its 
material, affects the thermal resistance. 

Another motivation for the present study has its 
origin in the micro-electronics industry. In recent 
years, ball grid arrays (BGAs) have been suggested as 
the solution for future high performance electronic 
packaging because they can provide the much needed 
space saving and meet the increasingly stringent 
requirements of fine interconnection pitch. Conse- 
quently, a dense routing inside the printed circuit 
board and short electric paths between device com- 
ponents are then possible. For a brief review of BGA, 
we refer to the articles by Lau [21] and Romenesko 
[22]. Although package level BGA assemblies have 
been reported to have thermal performances as good 
as or even better than other packaging technologies, 
there has not been any comprehensive study of the 

thermal performance limits of BGA components. 
However, it is apparent that their heat dissipation 
characteristics depend critically on the joint con- 
ductance between the two boards connected by the 
BGA. In this paper, we shall analyze the solder joint 
as a cylinder between two semi-infinite solids. This 
analytical model is applicable to the SCC (Solder Col- 
umn Connect) and, as a first approximation, the 
OMPAC (Over Molded Pad Array Carrier) and SBC 
(Solder Ball Connect) connection modes discussed by 
Adams [23]. 

As the name implies, a BGA system consists of 
an array of solder joints connecting two component 
boards. Therefore, a complete analysis of the heat 
transfer from one board to the other, via the solder 
joints, must take into account the thermal interactions 
of these joints. Even though analytical techniques to 
handle this type of problem exist [18, 24, 251, the 
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solution method for our problem may become much 
more difficult due to the more complicated geometry 
of the present stud.y. For the sake of simplicity, so 
that we can analyze the problem and extract valuable 
information from it, we shall therefore ignore the ther- 
mal interactions of the solder joints. This is justifiable 
if the joints are sufficiently far apart from each other. 

Our problem, then, is to analyze the heat transfer 
associated with a system comprising two solids, which 
we model to be semi-infinite, in contact through a 
cylindrical joint, as depicted in Fig. 1. At the interface 
between the cylinder and each of solids 2 and 3, perfect 
thermal contact is assumed. Since the temperature 
range of interests to us is sufficiently low so that radi- 
ative effects are not significant, we shall ignore this 
mode of heat tramfer. Furthermore, we also assume 
that the heat transfer across the gap between solids 2 
and 3 is negligible, on the ground that the fluid 
medium, usually air, filling the gap has a thermal 
conductivity which is much smaller than that of the 
solids. Therefore, we model the lateral surface of the 
cylinder and those of solids 2 and 3 not in contact 
with it to be impervious to heat flow. Finally, we shall 
be interested in steady-state heat transfer only. Thus, 
our problem consists of the analysis of the steady- 
state heat conduction from solid 3, which we assume 
to be the warmest, through the cylinder, and into solid 
2. Of main interest to us will be the calculation of the 
thermal resistance associated with this system. 

In general, the two semi-infinite solids must be 
assumed to have different thermal conductivities. 
However, for the sake of simplicity, we are interested 
only in the case in which the two solids have the same 
thermal conductivity. In this situation, we can follow 
Cooper et al. [6], and invoke the argument of geo- 
metrical symmetry and the uniqueness of solution, 
apart from an additive constant, to show that the 
temperature is uniform at the cross section of the 
cylinder midway between the two semi-infinite solids. 

Consequently, our original problem reduces to the 
heat transfer analysis in the simpler system depicted 
in Fig. 2. In the following developments, we shall be 
concerned with this simpler problem only. 

2. PROBLEM FORMULATION 

Introducing the dimensionless variables 

Q2, 52 
R 

TI-T, 0, =- T,-T, 
To-T,’ 

@* =- 
To-T, 

(2) 

we shall now state the governing equations together 
with the boundary conditions. In solid 1, the steady- 
state temperature satisfies Laplace’s equation 

v*o, =o (3) 

and the boundary condition of 

5 = -h: 0, = 1 (4) 

where h is the dimensionless height of the cylinder. 
The temperature field in solid 2 is also governed by 
Laplace’s equation 

v=o, = 0 

and the boundary conditions of 

(6) 

ao, <=o, e>l: F=o 

(e’ + P)“* -co: a* =o. (8) 
Since the two solids are assumed to be in perfect 
thermal contact at their interface, the conditions of 
continuity of temperature and heat flux apply : 

solid 3 
(semi-infinite) 

solid 2 
(semi-infinite) L R* 

Fig. 1. Two semi-infinite solids in thermal contact through a circular cylinder. 
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Fig. 2. Schematic diagram of the problem studied in this paper. 

(10) 

In equation (lo), k, and k2 are the thermal con- 
ductivities of solids 1 and 2, respectively. 

The main objective of this paper is to calculate the 
thermal resistance .%Y and to investigate its behavior 
as a function of the parameters h, k,, and k,. Here, we 
define the thermal resistance as 

(11) 

where 0 is the rate of heat flow from the cylinder to 
the semi-infinite solid, and AT is the difference 
between the temperature of the isothermal surface of 
the cylinder and the average surface temperature of 
the semi-infinite solid. Obviously, 

AT = A Tcy,,nder + A r,, (12) 

where ATcylmder is the axial temperature drop of the 
cylinder and AT,, is the difference between the average 
temperatures of the bottom of the cylinder and the 
entire surface of the semi-infinite solid. Thus, we can 
rewrite equation (11) as 

99=9w,+w, (13) 

where 9?, and 9, are the resistance due to the material 
of the cylinder and the constriction resistance at the 
interface of the two solids, respectively, and are given 

by 

9’, _ ATT 
(14) 

(15) 

In this paper, we shall mainly be interested in 9 only, 
instead of its separate components. To facilitate our 
study of the thermal resistance, we introduce the 
dimensionless resistance $, which is defined as 

II, = 4k, RB?. (16) 

In selecting the factor of 4k2R to non-dimensionalize 
the thermal resistance W, we have in mind the limiting 
case of h = 0. For this special case of an isothermal 
disk on an otherwise insulated surface of a semi-infi- 
nite solid, $ = 1 (see, for example, the article of Tio 
and Sadhal [17]). Obviously, it is convenient to use 
equation (16) to investigate the behavior of 9? as we 
vary k, while holding k, fixed. In the opposite situ- 
ation, in which we vary k, but keep k, fixed, it is more 
convenient to study the dimensionless resistance cp, 
which is given by 

$ 
q=4k,R9=z (17) 

where 

p+. 
I 

In the next section, we shall solve the problem given 
by equations (3)-(lo), and derive the formulas for $ 
and cp. 

3. SOLUTION 

By employing the technique of separation of vari- 
ables in the cylindrical coordinates (Q, C;), we obtain 
the dimensionless temperature 0, as 
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0, = l+a,(h+{)+ 2 a, sinh Uh+ W&,e) 
n=, 

2P a, = - f ~mQ~<Wm(kJ, 
A, cosh(&$r)[J&,)]’ m=o,2,.. 

(19) n= 1,2,.... (27b) 

where J0 is the Bessel function of the first kind of 
order zero, and 1, are the positive roots of the Bessel 
function of the first kind of order one, i.e., 

The functions F,(x) and G,(x) are defined as follows : 

J, (A,) = 0. (20) 

The temperature 0, as given in equation (19) satisfies 
the boundary conditions (4)-(5) irrespective of the 
coefficients a,, which will be determined later. 

To obtain the temperature field @, we first intro- 
duce the oblate spheroidal coordinates (a, /I, 4), which 
are related to the cylindrical coordinates (r, 4,~) 
through the formulas 

F,(x) = S’ uP,([l -u’]“~)&,(xu) du (28) 
0 

G,(x) = 
s 

’ u[l-~~l-“~P,,,([l -U’]“2)50(xU)du. 
0 

(29) 

r = Rcoshasin/I 

z = Rsinhacos/I. 

The metric coefficients are given by 

(21) 

(22) 

h, = h, := R(cosh’ a-sin2 /I)“’ (23) 

h, = R cash a sin /I. (24) 

In the oblate spheroidal coordinate system, the inter- 
face between solids 1 and 2 corresponds to a = 0, 
while the surface of solid 2 not in contact with solid 1 
is given by p = n/2. The positive z-axis corresponds 
to \ = 0, and the far field (i.e., (r2+z2)‘12 -+ co) is 
identified by a -+ co. By separation of variables [26], 
we obtain the temperature O2 as 

A discussion on the computation of the functions F, 
and G, will be given in the Appendix. 

From the interface conditions (9), (lo), we have 
obtained two sets of equations (26a), (26b) and (27a), 
(27b) for the two sets of unknown coefficients a,, and 
b,. In principle, then, we can solve the two sets of 
equations for the unknown coefficients. Eliminating 
a, from equations (26a)-(27b), we obtain an infinite 
set of simultaneous linear equations for the unknown 
b,: 

=f C,,b,=;6.,, n=0,1,2 ,.... (30) 
rn=O,Z, 

The Kronecker delta symbol 6,, is defined by 

&n. = 
{ 

0 ifm#n 

1 ifm=n 
(31) 

and the coefficients C,,, by 

C,, = iQm(iO)Fm(A,) + ’ tanF(ih) Q~(iO)G,(&) 
” 

(32) 

O2 = f ibnQn(isinha)P,(cos/?) (25) 
n=rl,i,. 

where P, is the Legendre polynomial of degree n, Qn 
the Legendre function of the second kind of degree n, 
and i2 = - 1. Since Q,, (i sinh a) is imaginary for zero 
and even n, we include the number i in equation (25) 
so that the coefficients b, are always real. The tem- 
perature field 0, ars given by equation (25) satisfies 
the boundary conditions (7) (8). 

To determine the coefficients a, and b,, we make 
use of the interface conditions (9), (10). From the 
condition of continuity of temperature, we obtain 

ao = - k -12: _2 ib,Q,(iO)Fm(0) (26a) 
m-0,2,.. 

2 
~ f 

a, = sinh(i,h)[Jo(i,)]2 m=~,2,... 
ikQm(iW,&J, 

n= 1,2,.... (26b) 

Applying the condition of continuity of heat flux, we 
obtain 

a, = -2~ f b,Q~(iO)G,(O) 
In= 0,2,... 

(274 

where i. = 0, &, 1,, . . . are the non-negative roots of 
the Bessel function J,. In the next section, we shall 
discuss the results obtained by truncating the infinite 
set of equations given by (30) and solving the resulting 
finite set numerically. To solve this finite set of sim- 
ultaneous linear equations, we shall use the Gauss- 
Jordan elimination scheme. 

Of main interest in this paper is the calculation of 
the dimensionless resistances $ and cp. However, we 
need to calculate first the rate of heat transfer Q from 
solid 1 to solid 2. To obtain Q, we integrate the heat 
flux across the interface over the entire interfacial 
area : 

= 2nbORk2(T0 - T,). (33) 

Substituting the formula for Q given above into equa- 
tion (1 l), and noting that the average surface tem- 
perature of solid 2 is equal to T,, we then obtain the 
dimensionless resistances as 
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q=2 
vbo 

4. RESULTS AND DISCUSSION 

Since equation (30) is an infinite set of simultaneous 
linear equations, we need to truncate it so that we can 
solve the resulting finite set of N equations for the 
N unknown coefficients 6,. However, before we can 
numerically extract any information from equation 
(30), we need to establish first the smallest acceptable 
value of N. In Fig. 3, we plot the quantity 6, which is 
defined by 

6 = b(l)-b(N) 
ho(l) 

x 100 

as a function of N for the case of p = 1 .O and h = 1 .O. 
In equation (36), b,(N) is the value of b, computed 
using the first N equations of the system of (30). From 
Fig. 3, we see that b,(N) has started approaching 
asymptotically the true value of b,, which is equal to 
b,(N + co), by the time we increase N to 20. Based on 
Fig. 3, we decide that it is sufficient to use the first 20 
equations of the system of (30) to calculate bo, which 
is the only unknown we need in the calculation of the 
dimensionless resistances [see equations (34), (35)]. 

To confirm that it is sufficient to use the first 20 
equations of the system of (30), let us examine the 
quantity E, which is defined as 

&= 
boU9)--bo(20) x 1o6. 

bo(l9) (37) 

In Fig. 4, we plot the quantity E versus the conductivity 
ratio p with h being the parameter. It is seen that 
for a given h, F decreases when a sufficiently small 
p decreases or when a sufficiently large p increases; 
furthermore, E -+ 0 as p + 0 or p -+ cc. This is so 
because we can solve the system of (30) exactly for b, 
in these special cases of p = 0 and ,u + co. From Fig. 
4, we also observe that for a fixed p (and a sufficiently 
large h), E increases with a decreasing h. However, 
when h has decreased to a certain value, a further 
decrease in h results in the decrease of E, as is evident 
from Fig. 5, which shows that E = 0 when h = 0. In 
fact, for the special cases of h = 0 h + cc, we can solve 
the system of (30) exactly for b,. Even though we 
present in Fig. 5 the results for p = 0.5, 1.0, 2.0 only, 
our calculations for 0.01 d p < 100 show that E never 
reaches the value of 40. Thus, considering that the 
value of E = 40 corresponds to the relative difference 
between b,, (19) and b, (20) of only 4 x 1O-5 [see equa- 
tion (37)], we conclude that using only the first 20 
equations of the system of (30) is adequate for our 
purpose here. In what follows, all the results are 
obtained using b,, (20). 

In Fig. 6, we plot the dimensionless resistance $ as 
a function of the dimensionless height h, the con- 
ductivity ratio p being the parameter. We note that 
$ = 1 when h = 0, which is a well known result (see 
reference [17], for example). Furthermore, as h 
increases, so does $, because a greater h means that 
there is more material resistance. From Fig. 6, we also 
observe that for a given h, the resistance IJ and its rate 
of increase [i.e., dll//dh) are greater for a larger p. This 
is so because, with k, fixed, a larger p means a smaller 
k, and, thus, a larger material resistance of the cylinder 
Finally, we note that, except for very small values of 

Fig. 3. The quantity S as a function of N, the number of simultaneous equations used in the calculation of bo. 
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8.0 

6.0 

& 

4.0 

Fig. 4. The quantity E as a function of the conductivity ratio p. 

I I 

4.0 6.0 

h x lo3 
Fig. 5. The quantity E as a function of the dimensionless height h. 

h, the slope d$/dh is practically a constant for a given 

P. 
In Fig. 7, we plot the derivative $’ = d$/dh as a 

function of h with /J as a parameter. The values of 
$’ have been calculated using a fourth-order central 
difference scheme given by 

@(h) = 

$(h-2Ah)-fQ(h-Ah)+8$(h+Ah)-t+b(h+2Ah) 
12Ah 

(38) 

where Ah = 0.025. From Fig. 7, we see that. for a fixed 
,LL, $’ approaches its asymptotic value rapidly as we 

increase the dimensionless height h. This means that 
except when h is very small, the increase in the thermal 
resistance is solely due to the increase in the material 
resistance, which, in turn, is the result of the increased 
height of the cylinder. To see this quantitatively, we 
first note that, in dimensionless form, the material 
resistance of the cylinder against axial heat flow can 
be derived from equation (14) and is given by 

4h 
(Pm = T 

From equation (39), it follows that 
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h 
Fig. 6. Thermal resistance rj as a function of the cylinder’s height h. 

I 1 I I 

0.0 0.1 0.2 0.3 0.4 0.5 

h 
Fig. 7. Derivative of the thermal resistance rj as a function of the cylinder’s height h. 

dh x 

For p = 0.5, 1.0, 2.0, we read from Fig. 7 that at 
h = 0.5, II/’ is equal to 0.640, 1.277,2.550, respectively. 
For the same set of n, equation (41) yields 0.637, 
1.273, 2.546, respectively. From this comparison of 
Fig. 7 and equation (41), we may conclude that, for 
practical purposes, r+V reaches its limiting value when 
h is increased to h - O(1). To summarize what we 
have observed from Figs. 6 and 7: the resistance rj 
increases from $ = 1 when we increase the dimen- 
sionless height of the cylinder from h = 0. For h << 1, 
the increase in $ results from the increase in both the 

constriction and material resistances ; however, when 
h has reached the order of 1, further increase in the 
height of the cylinder results in the increase in the 
material resistance only, the increase in the con- 
striction resistance being negligible. We shall have a 
few words on the constriction resistance later. 

The behavior of II/ as a function of p, h being a 
parameter, is depicted in Fig. 8. We note that for p + 
0, $ = 1, which is the result for an isothermal contact 
area on a half space. Physically, a small p, k, being 
fixed, means that the cylinder is composed of a highly 
conductive material ; consequently, the thermal resist- 
ance 9? is dominated by the constriction resistance, the 
material resistance of the cylinder being insignificant. 
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25.0 - 

20.0 - 

11; 15.0 - 

10.0 - 

5.0 - 

Fig. 8. Thermal resistance I) as a function of the conductivity ratio p. 

However, when p increases (i.e., when the material of 
the cylinder becomes less conductive), the material 
resistance becomes significant and the thermal resist- 
ance increases, as is clearly seen from Fig. 8. When 
p is increased be:yond a certain value, the material 
resistance becomes the dominant part of the thermal 
resistance 2, the constriction resistance being insig- 
nificant in comparison. In this case, $ approaches its 
asymptotic value 1(1, given by equation (39) as 
p + co. That is, II, N p, or, as can be seen from Fig. 8, 

l%P $-e 
To see from a different perspective the dependence 

of the thermal resistance on the conductivity ratio, let 
us consider the cp-vs-p plot of Fig. 9, in which we hold 

k, constant but vary k,. We observe that as p increases, 
the resistance cp decreases ; furthermore, when p 
becomes sufficiently large, cp approaches asymp- 
totically a limiting value. Physically, this means that 
as the semi-infinite solid becomes more conductive, 
the constriction resistance decreases and, since the 
material resistance is constant, so does the (overall) 
thermal resistance. When the thermal conductivity of 
the semi-infinite solid becomes sufficiently large, the 
constriction resistance becomes insignificant com- 
pared to the material resistance. In this case, cp 
approaches its asymptotic value of (P,,, given by equa- 
tion (40) as p + co. For h = 0.5, 1.0, 2.0, qrn is equal 
to 0.634, 1.273,2.546, respectively. These indeed com- 

10-l loo 10’ lo2 

P 
Fig. 9. Thermal resistance cp as a function of the conductivity ratio 1(. 
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pare very favorably with the respective values of 0.647, 
1.284, 2.557 at p = 100 read from Fig 9, considering 
that (P,,, is reached only when p becomes very large. 

From equation (13) we see that the thermal resist- 
ance W consists of two components: the material 
resistance of the cylinder and the constriction resist- 
ance at the interface of the cylinder and the semi- 
infinite solid. In dimensionless form, 

i = $,+$C (42) 

where $C is the dimensionless constriction resistance. 
In Fig. 10, we plot the constriction resistance $,, cal- 
culated using equation (42), as a function of the cyl- 
inder’s height h with the conductivity ratio p as a 
parameter. It is seen that for a given conductivity ratio 
I(, the constriction resistance $C increases with the 
dimensionless height h and rapidly approaches its 
asymptotic value. Furthermore, $, reaches it limiting 
value more rapidly if the conductivity ratio p is 
increased. From Fig. 10, we also observe that for a 
given set of h and k,, the constriction resistance 
increases as k, decreases. This is hardly unexpected, 
since a smaller k, means a less conductive cylinder and, 
therefore, a larger constriction resistance. Finally, we 
note that the increase in the constriction resistance 
due to a finite height of the cylinder is, for practical 
purposes, fairly small. Even in the case of p = 100, 
for example, the constriction resistance increases by 
only about 8% from its zero-h value as we increase h 
to beyond 0.5. 

As mentioned earlier in the Introduction, the pre- 
sent study is partly motivated by the applications of 
BGA in the micro-electronics industry. In connection 
with the applicability of our study to the BGA joints 
in micro-electronic packages, Table 1 gives the 
approximate values of p for some of the commonly 
encountered materials. In Table 2, we give the 

Table 1. The conductivity ratio n for a 60/40-Pb/Sn cylinder 
and solid 2 of some common materials 

Solid 2 

Copper trace 
Silicon 
AIZO, 
Epoxy mold compound 
Out-of-plane PCB 

0.19 
0.4 

12.5 
75 

166 

Table 2. The aspect ratio h for some 
common joint types 

Joint type h 

OMPAC -1.5 
SBC -2.9 
see 8.8 

approximate values of the aspect ratio of the cylinder, 
h, which are applicable to some of the common joint 
types. 

5. CONCLUDING REMARKS 

In this paper, we have carried out an analytical 
study pertaining to the thermal resistance of two semi- 
infinite solids in contact through a cylindrical joint. 
Our study is applicable only to the case in which the 
two solids have the same thermal conductivity. In this 
case, we can invoke the symmetry of the physical 
configuration and the uniqueness of the solution for 
the temperature field, apart from an additive constant, 
to show that the temperature is uniform throughout 

1.10 - I I I I 

/l = 100.0 
1.08 - 

p = 10.0 

0.0 0.1 0.2 0.3 0.4 0.5 

h 
Fig. 10. Thermal constriction resistance $I, as a function of the cylinder’s height h. 
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the cross section of the cylinder midway between the 8. Bush, A. W. and Gibson, R. D., A theoretical inves- 

two solids. Our problem then reduces to the simpler tigation of thermal contact conductance. AppliedEnergy, 

one which consists ‘of one semi-infinite solid and half 
1979,&l l-22. 

of the cylinder. In the more general case in which the 
9. Majumdar, A. and Tien, C. L., Fractal network model 

for contact conductance. Journal of Heat Transfer, 1991, 
two semi-infinite solids have different thermal con- 113,516525. 
ductivities, we cannot apply physical symmetry to 10. Hunter, A. and Williams, A., Heat flow across metallic 

show that the temnerature is uniform at the cross 
joints-the constriction alleviation factor. International 

section of the cylind.er midway between the two solids. 
In fact, we expect that the temperature is not uniform 
there. In a somewhat similar study of two semi-infinite 
solids with an interstitial body at their interface, Das 
and Sadhal [19] show that the interface of the two 
solids is isothermal if and only if geometrical sym- 
metry exists and the two solids have the same thermal 
conductivity. 

11. 

12. 

13. 

Returning to our original problem of two semi- 
infinite solids of the same thermal conductivity (see 
Fig. l), it is easy to show that the thermal resistance 
%Yt,,, is given by 

Journal of Heat and Mass Transfer, 1969, 12, 524-526. 
Gibson, R. D., The contact resistance for a semi-infinite 
cylinder in a vacuum. Applied Energy, 1976, 2, 57-65. 
Negus, K. J. and Yovanovich, M. M., Constriction 
resistance of circular flux tubes with mixed boundary 
conditions by linear superposition of Neumann solu- 
tions. ASME Paper 84-HT-84, 1984. 
Faltin, C., Exact solution of constriction resistance and 
temperature field within a homogeneous cylindrical body 
heated by an isothermal contact spot. International Corn- 
munications in Heat and Mass Transfer, 1985, 12, 611- 
686. 

&& = 22. 

Here, we define W,,,, as 

(43) 

(44) 

where AT,,, is the difference between the average sur- 
face temperatures of the two semi-infinite solids. 

While our study deals with one cylinder only, the 
results can be applied to the more general case in 
which the two semi-infinite solids are in contact 
through a large number of cylinders, provided that 
any two adjacent cylinders are sufficiently far apart. 
However, if the cylinders are closely arranged in an 
array, the error, which is a function of the array type, 
can become significant, as can be conjectured from 
the analytical study of Tio and Sadhal [17] for an 
array of contact areas on a half space. The problem 
of multiple cylinders is very complicated and, there- 
fore, is not pursued here. 

1. 

2. 

3. 

4. 

5. 

6. 
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APPENDIX 

of a rough elastic contact. Applied Energy, 1976,2,249% To calculate the coefficients C,, [see equation (32)], we 
267. need to calculate first the functions F,(I,) and G,(E.,,) as well 
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as the Legendre function of the second kind Q,,,(iO) and its 
derivative QL(i0). Substituting the Legendre polynomial 

P”,(X) = c mi* (-lYW-2j)! Xm_2,,  m = o 2 

,=02"j!(m-j)!(m-2j)! 
1 > ,. 

(A.11 

into equation (28), changing the order of integration and 
summation, and making use of formula (6.567.1) of Grad- 
shteyn and Ryzhik [27], we obtain 

&(&J = - c 
1 mi*ml (-1)‘(2m-2j)!(m/2-j)! J _ (n ). 

2”‘!2 ,=O 2’j!(m-j)!(m-2j)!~~/2--1+I mi2 ‘+I ” 

(A2 

To calculate the function G,(&J, we substitute the series 
expansion 

J,(x) = f 
(- lY(x/Z)‘“’ 

,=o r(j+ l)r(j+ 1+ v) 
(A.3) 

where f denotes the gamma function, into equation (29), 
interchange the order of integration and summation, and 
make use of formula (7.132) of Gradshteyn and Ryzhik [27]. 
Then, after some simple manipulation of the result, we obtain 

G,n(A,) = 

Equations (A.2) and (A.4) are valid form = 2,4,6,. , and 
all the positive roots I,, 1,, I,, , of equation (20). For the 
special case of m = 0, 

F&?,)=O, n= 1,2,... (A.5) 

G,(&) = 5 
( ! 

l/Z 
J,,, GA n= 1,2,.... (A.6) 

n 

For 1, = 0, we can, with the aid of formula (7.121) of Grad- 

shteyn and Ryzhik [27], derive directly from equation (28) 
the following expression for F,(O) : 

pm (0) 
F”z(o) = - (m_l)(m+2), m = 0,2,. (A.7) 

Making use of the orthogonality of Legendre polynomials, 
it is straightforward to obtain 

1, ??I=0 
G,(O) = 

0, in = 2,4,. .: 
(‘4.8) 

To calculate the Bessel functions in equations (A.2) and 
(A.4). we select a sufficiently large v and calculate J,,(l,) and 
J,_,(,&) using the series expansion of equation (A.3). Then, 
we calculate J,_,(A,), J,_,(&), , successively using the 
recurrence relation of 

J&G,) = 
2(v+ 1) 
---Jv+,M,-J\,+,(k). A (A.9) 

n 

Since we use equation (A.9) to calculate the Bessel functions 
in the direction of decreasing order, this practice is always 
permissible, as pointed out by Abramowitz and Stegun [28]. 
The first nineteen positive roots of i.,, with an accuracy of 
unto the tenth decimal place, are given in reference [28], and 
will not be reproduced here. 

To calculate Q,,,(iO), m = 2,4,. , we start with 

Qo(iO) = -ik 
2 

and use the recurrence relation 

m-l 
Q,,,(iO) = - __ Q,,-z(iO), m = 2,4,. m 

Similarly, we can use 

Qb(i0) = 1 

Q;(iO) = -$-,Q;_&O), m = 2,4,. 

to calculate the first derivatives of Q: (i0). 

(A.10) 

(A.11) 

(A.12) 

(A.13) 


